SODOCK: Swarm optimization for highly flexible protein-ligand docking

نویسندگان

  • Hung-Ming Chen
  • Bo-Fu Liu
  • Hui-Ling Huang
  • Shiow-Fen Hwang
  • Shinn-Ying Ho
چکیده

Protein-ligand docking can be formulated as a parameter optimization problem associated with an accurate scoring function, which aims to identify the translation, orientation, and conformation of a docked ligand with the lowest energy. The parameter optimization problem for highly flexible ligands with many rotatable bonds is more difficult than that for less flexible ligands using genetic algorithm (GA)-based approaches, due to the large numbers of parameters and high correlations among these parameters. This investigation presents a novel optimization algorithm SODOCK based on particle swarm optimization (PSO) for solving flexible protein-ligand docking problems. To improve efficiency and robustness of PSO, an efficient local search strategy is incorporated into SODOCK. The implementation of SODOCK adopts the environment and energy function of AutoDock 3.05. Computer simulation results reveal that SODOCK is superior to the Lamarckian genetic algorithm (LGA) of AutoDock, in terms of convergence performance, robustness, and obtained energy, especially for highly flexible ligands. The results also reveal that PSO is more suitable than the conventional GA in dealing with flexible docking problems with high correlations among parameters. This investigation also compared SODOCK with four state-of-the-art docking methods, namely GOLD 1.2, DOCK 4.0, FlexX 1.8, and LGA of AutoDock 3.05. SODOCK obtained the smallest RMSD in 19 of 37 cases. The average 2.29 A of the 37 RMSD values of SODOCK was better than those of other docking programs, which were all above 3.0 A.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new approach for flexible protein-ligand docking based on Particle Swarm Optimisation

Particle Swarm Optimiser (PSO) uses a general-purpose, iterative, heuristic search algorithm. It considers a population of individuals to probe promising regions of the search space in an effective manner. In this context, the population of solutions is called a swarm, and the individuals are called particles. Each particle moves within the search space and retains in its memory the best positi...

متن کامل

PSOVina: The hybrid particle swarm optimization algorithm for protein-ligand docking

Protein-ligand docking is an essential step in modern drug discovery process. The challenge here is to accurately predict and efficiently optimize the position and orientation of ligands in the binding pocket of a target protein. In this paper, we present a new method called PSOVina which combined the particle swarm optimization (PSO) algorithm with the efficient Broyden-Fletcher-Goldfarb-Shann...

متن کامل

HIGA: A Running History Information Guided Genetic Algorithm for Protein-Ligand Docking.

Protein-ligand docking is an essential part of computer-aided drug design, and it identifies the binding patterns of proteins and ligands by computer simulation. Though Lamarckian genetic algorithm (LGA) has demonstrated excellent performance in terms of protein-ligand docking problems, it can not memorize the history information that it has accessed, rendering it effort-consuming to discover s...

متن کامل

Protein-ligand docking using fitness learning-based artificial bee colony with proximity stimuli.

Protein-ligand docking is an optimization problem, which aims to identify the binding pose of a ligand with the lowest energy in the active site of a target protein. In this study, we employed a novel optimization algorithm called fitness learning-based artificial bee colony with proximity stimuli (FlABCps) for docking. Simulation results revealed that FlABCps improved the success rate of docki...

متن کامل

Fleksy: a flexible approach to induced fit docking

Protein receptor rearrangements upon ligand binding are a major complicating factor in structure-based drug design. An accurate prediction of these so-called induced fit phenomena calls for ligand docking and virtual screening approaches capable of considering receptor flexibility. We present Fleksy [1], a flexible approach aimed at accurately positioning small molecule ligands into a protein r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of computational chemistry

دوره 28 2  شماره 

صفحات  -

تاریخ انتشار 2007